Skip to main content
- ab = {(a+b)/2}²-{(a-b)/2}²
- (a+b+c)² = a²+b²+c²+2(ab+bc+ca)
- (a² + b² + c²) = (a + b + c)² – 2(ab + bc + ca)
- 2 (ab + bc + ca) = (a + b + c)² – (a² + b² + c²)
- (a + b + c)³ = a³ + b³ + c³ + 3 (a + b) (b + c) (c + a)
- a³ + b³ + c³ – 3abc =(a+b+c)(a² + b²+ c²–ab–bc– ca)
- a3 + b3 + c3 – 3abc =½ (a+b+c) { (a–b)²+(b–c)²+(c–a)²}
- (x + a) (x + b) = x² + (a + b) x + ab
- (x + a) (x – b) = x² + (a – b) x – ab
- (x – a) (x + b) = x² + (b – a) x – ab
- (x – a) (x – b) = x² – (a + b) x + ab
- (x+p) (x+q) (x+r) = x³ + (p+q+r) x² + (pq+qr+rp) x +pqr
- bc (b-c) + ca (c- a) + ab (a – b) = – (b – c) (c- a) (a – b)
- a² (b- c) + b² (c- a) + c² (a – b) = -(b-c) (c-a) (a – b)
- a (b² – c²) + b (c² – a²) + c (a² – b²) = (b – c) (c- a) (a – b)
- a³ (b – c) + b³ (c-a) +c³ (a -b) =- (b-c) (c-a) (a – b)(a + b + c)
- b²-c² (b²-c²) + c²a²(c²-a²)+a²b²(a²-b²)=-(b-c) (c-a) (a-b) (b+c) (c+a) (a+b)
- (ab + bc+ca) (a+b+c) – abc = (a + b)(b + c) (c+a)
- (b + c)(c + a)(a + b) + abc = (a + b +c) (ab + bc + ca)
Comments
Post a Comment